1.Estimate the power transmission capacity of a muff coupling having shaft diameter of 80 mm , muff diameter of 150 mm rotating at $150 \mathrm{rpm} .[\tau]_{\text {shaft }}=50$ $\mathrm{N} / \mathrm{mm}^{2}$. $[\tau]_{\text {muf }}=10 \mathrm{~N} / \mathrm{mm}^{2}$ SOLUTION:-

$$
\begin{aligned}
& >\mathrm{d}=80 \mathrm{~mm} \\
& >\mathrm{D}=150 \mathrm{~mm} \\
& >\mathrm{N}=150 \mathrm{rpm} \\
& >[\tau]_{\text {shaft }}=50 \mathrm{~N} / \mathrm{mm}^{2} \\
& >[\tau]_{\text {muf }}=10 \mathrm{~N} / \mathrm{mm}^{2} \\
& >\mathrm{P}=? ? ? ?
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\pi}{16} \mathrm{~d}^{3} \times[\tau] \\
& =\text { (pie } / 16)^{*} 80^{3} * 50 \\
& =5.02^{*} 10^{6} \mathrm{~N}^{*} \mathrm{~mm} \\
\mathbf{M}_{\mathrm{t}} & =5.02 * \mathbf{N}^{3} \mathbf{N}^{*} \mathrm{~m}
\end{aligned}
$$

POWER P $\quad \mathrm{P}=\frac{2 \pi \mathrm{NM}_{\mathrm{t}}}{60 \times 10^{3}}$

$$
=2 * \text { PIE }{ }^{*} 5.02 * 10^{3 *} 150 / 60
$$

$$
=78.85 * 10^{3} \mathrm{watt}
$$

$$
=78.85 \mathrm{KW}
$$

$$
\mathrm{P}=\frac{2 \pi \mathrm{NM}_{\mathrm{t}}}{60 \times 10^{3}} \quad 5.02 * 10^{6}
$$

2.A hollow shaft having 230 mm and 310 mm internal and external diameter respectively rotates at 120 rpm and transmits 30hp. Determine the stresses induced in the shaft.
Solution:-

$$
\begin{aligned}
& >\mathrm{D}=310 \mathrm{~mm} \\
& >\mathrm{d}=230 \mathrm{~mm} \\
& >\mathrm{N}=120 \mathrm{RPM} \\
& >\mathrm{P}=30 \mathrm{HP}=30^{*} 0.746=22.38 \mathrm{KW} \\
& >\tau=? ? ? ?
\end{aligned}
$$

1.Torque:-

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\mathrm{KW} \times 10^{6} \times 60}{2 \pi \mathrm{~N}}(\mathrm{~N} . \mathrm{mm}) \\
& =22.38 * 10^{6 *} 60 /\left(2 \pi^{*} 120\right)
\end{aligned}
$$

$=1780943.81 \mathrm{~N}^{*} \mathrm{~mm}$
2. Shear stress:-

$$
\begin{aligned}
& M_{t}=\frac{\pi}{16}\left[\frac{D^{4}-d^{4}}{D}\right] \times[\tau] \\
& \tau=M_{t}^{*} 16^{*} D /\left(\pi^{*}\left(D^{4}-d^{4}\right)\right) \\
& \\
& =1780943.81 * 16^{*} 310 /\left(\pi^{*}\left(310^{4}-230^{4}\right)\right. \\
& \\
& =0.33 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

3. A flange coupling transmit 15 Kw power at 200 rpm.Maximum torque is 25 \% higher than full load torque. Determine the diameter of shaft and number of bolts. [τ]shaft $=40 \mathrm{~N} / \mathrm{mm}^{2}$.
Solution:

$$
\begin{aligned}
& >P=15 \mathrm{KW} \\
& >N=200 \mathrm{RPM} \\
& >\mathrm{T}_{\max }=\mathrm{T}+25 \% \mathrm{~T}=1.25 * \mathrm{~T} \\
& >\mathrm{d}, \mathrm{n}=? ? ? ?
\end{aligned}
$$

1.Find shaft dia;-

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\mathrm{KW} \times 10^{6} \times 60}{2 \pi \mathrm{~N}}(\mathrm{~N} . \mathrm{mm}) \\
& =15^{*} 10^{6 *} 60 /\left(2 \pi^{*} 200\right) \\
& =716.19 * 10^{3} \mathrm{~N}^{*} \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}_{\max } & =1.25^{*} \mathrm{~T} \\
= & 1.25^{*} 716.19^{*} 10^{3} \\
= & 895.24^{*} 10^{3} \mathrm{~N}^{*} \mathrm{~mm} \\
\mathrm{M}_{\mathrm{t}} & =\frac{\pi}{16} \times \mathrm{d}^{3} \times[\tau] \\
\mathrm{d}_{\text {shaft }} & =16^{*} \mathrm{~T}_{\max } /\left(\pi^{*} \tau_{\text {shaft }}\right) \\
& =16^{*} 895.24^{*} 10^{3} /(40 \pi) \\
\mathrm{d}^{3} & =113.98^{*} 1000 \mathrm{~mm} \\
& =48.46 \mathrm{~mm} \\
& =50 \mathrm{~mm}
\end{aligned}
$$

2. No. of bolt

$$
\begin{aligned}
\mathrm{n} & =0.02 \mathrm{~d}+3 \\
& =0.02 * 50+3 \\
\mathrm{n} & =4
\end{aligned}
$$

4.Find the diameter for the 4 bolts of a flange coupling to transmit 60 kW at 300 rpm . The pitch circle diameter of bolt is 300 mm . The allowable shear stress
for bolt is 25 MPa . Assume maximum torque to be 25% greater than full load torque.
Solution:-
$>\mathrm{n}=4$
$>P=60 \mathrm{KW}$
$>\mathrm{N}=300 \mathrm{RPM}$
$>D_{\mathrm{p}}=300 \mathrm{~mm}$
$>[\tau]_{\text {bolt }}=25 \mathrm{MPa}=25 \mathrm{~N} / \mathrm{mm}^{2}$
$>T_{\text {max }}=1.25 * T$
$>\mathrm{d}_{\mathrm{b}}=$?????
1.Find Torque;-

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\mathrm{KW} \times 10^{6} \times 60}{2 \pi \mathrm{~N}}(\mathrm{~N} . \mathrm{mm}) \\
& =60 * 10^{6 *} 60 /\left(2 \pi^{*} 300\right) \\
& =1.90 * 10^{6} \mathrm{~N} * \mathrm{~mm}
\end{aligned}
$$

$\mathrm{T}_{\text {max }}=1.25^{*} \mathrm{~T}$

$$
\begin{aligned}
& =1.25 * 1.90^{*} 10^{6} \\
& =2.375 * 10^{6} \mathrm{~N} * \mathrm{~mm}
\end{aligned}
$$

2. Dia of bolt:-

$$
\begin{aligned}
& {\left[\mathrm{M}_{\mathrm{t}}\right]=\frac{\pi}{4} \times \mathrm{d}_{\mathrm{b}}^{2} \times[\tau]_{\mathrm{bolt}} \times \mathrm{n} \times \frac{\mathrm{D}_{\mathrm{P}}}{2}} \\
& \begin{aligned}
\therefore \mathrm{d}_{\mathrm{b}} & =\left[\frac{8 \times\left[\mathrm{M}_{\mathrm{t}}\right]}{\pi \times[\tau]_{\text {bolt }} \times \mathrm{n} \times \mathrm{D}_{\mathrm{P}}}\right] \\
& =8 * 2.375^{*} 10^{6} /\left(\pi^{*} 25 * 4 * 300\right) \\
\mathrm{d}_{\mathrm{b}} & =14.19 \mathrm{~mm} \\
& =16 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

5. A simple flange coupling has to transmit 40 KW at 450 RPM. Assume torque to be 25 \% more than the full load. Calculate (a) Shaft diameter (b) Key Dimensions and (c) number \& size of Bolts. The stresses are as under, For Shaft \& Key $\sigma=100$
$\mathrm{N} / \mathrm{mm} 2, \tau=50 \mathrm{~N} / \mathrm{mm} 2 \& \tau \mathrm{c}=75 \mathrm{~N} / \mathrm{mm} 2$ For Bolt τb
$=40 \mathrm{~N} / \mathrm{mm} 2$.
SOLUTION:
$>P=40 \mathrm{KW}$
$>\mathrm{T}_{\text {max }}=1.25^{*} \mathrm{~T}$
$>\mathrm{N}=450 \mathrm{RPM}$
$>\sigma=100 \mathrm{~N} / \mathrm{mm}^{2}$ (shaft \& key)
$>\tau=50 \mathrm{~N} / \mathrm{mm} 2$ (shaft \& key)
$>\tau_{b}=40 \mathrm{~N} / \mathrm{mm} 2$

$$
>\mathrm{d}, \mathrm{~L}, \mathrm{~W}, \mathrm{t}, \mathrm{n}, \mathrm{~d}_{\mathrm{b}}=\text { ????? }
$$

1. FIND SHAFT DIAMETER (d):-

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\mathrm{KW} \times 10^{6} \times 60}{2 \pi \mathrm{~N}}(\mathrm{~N} . \mathrm{mm}) \\
& =40^{*} 10^{6 *} 60 /\left(2^{\pi^{*} 450}\right) \\
& =848.82^{*} 10^{3} \mathrm{~N}^{*} \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}_{\max } & =1.25 * \mathrm{~T} \\
& =1.25 * 848.82 * 10^{3} \\
& =1.06 * 10^{6} \mathrm{~N} * \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
M_{t} & =\frac{\pi}{16} \times d^{3} \times[\tau] \\
d^{3} & =16^{*} T_{\max } /\left(3.14^{*} \tau_{\text {shaft }}\right) \\
& =16^{*} 1.06^{*} 10^{6} /\left(3.14^{*} 50\right) \\
d & =47.62 \mathrm{~mm} \\
d & =48 \mathrm{~mm}
\end{aligned}
$$

2. KEY DIMENSIONS:-
$>\mathrm{L}=1.57 \mathrm{~d}=1.57 * 48=75.36 \mathrm{~mm}=76 \mathrm{~mm}$
$>\mathrm{W}=\mathrm{d} / 4=48 / 4=12 \mathrm{~mm}$
$>\mathrm{T}=\mathrm{d} / 6=48 / 6=8 \mathrm{~mm}$
$>$ Pitch circle diameter $D_{1}=D_{p}=3 d=3^{*} 48=144 \mathrm{~mm}$
No of bolt $\mathrm{n}=0.02 \mathrm{~d}+3=0.02 * 48+3=3.96=4$ nos.
$>$ Diameter of bolt d_{b} :

$$
\begin{aligned}
{\left[\mathrm{M}_{\mathrm{t}}\right] } & =\frac{\pi}{4} \times \mathrm{d}_{\mathrm{b}}^{2} \times[\tau]_{\text {bolt }} \times \mathrm{n} \times \frac{\mathrm{D}_{\mathrm{P}}}{2} \\
\therefore \mathrm{~d}_{\mathrm{b}} & =\left[\frac{8 \times\left[\mathrm{M}_{\mathrm{t}}\right]}{\pi \times[\tau]_{\text {bolt }} \times \mathrm{n} \times \mathrm{D}_{\mathrm{P}}}\right] \\
& =8 * 1.06 * 10^{6} /(3.14 * 40 * 4 * 144) \\
& =10.82 \mathrm{~mm} \\
d_{\mathrm{b}} & =12 \mathrm{~mm}
\end{aligned}
$$

6. A C.I. flange coupling is required to transmit 15 kW at 900 R.P.M. Find shaft diameter ' d ', hub diameter ' D ', no. of bolts ' n ' and bolt diameter 'db'. Permissible stresses - shear [τ] for shaft and bolt material = 40 Mpa and crushing stress for bolt material = 80 Mpa and shear stress for C.I. flange material [τ] $=8 \mathrm{MPa}$.
1.FIND SHAFT DIAMETER (d):-

$$
\begin{aligned}
\mathrm{M}_{\mathrm{t}} & =\frac{\mathrm{KW} \times 10^{6} \times 60}{2 \pi \mathrm{~N}}(\mathrm{~N} . \mathrm{mm}) \\
& =15^{*} 10^{6 *} 60 /\left(2^{*}{ }^{* 900}\right) \\
& =159.15^{*} 10^{3} \mathrm{~N} * \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
M_{t} & =\frac{\pi}{16} \times d^{3} \times[\tau] \\
d^{3} & =16^{*} T_{\max } /\left(3.14^{*} \tau_{\text {shaft }}\right) \\
& =16^{*} 159.15^{*} 10^{3} /\left(3.14^{*} 40\right) \\
d & =27.26 \mathrm{~mm} \\
d & =28 \mathrm{~mm}
\end{aligned} \\
& \begin{aligned}
\text { 3. FIND HUB DIAMETER (D):- } \\
\begin{aligned}
\mathrm{D}=2 \mathrm{~d}= & 2 * 28=56 \mathrm{~mm} \\
\mathrm{M}_{\mathrm{t}}= & \frac{\pi}{16}\left[\frac{\mathrm{D}^{4}-\mathrm{d}^{4}}{\mathrm{D}}\right] \times[\tau] \\
\tau_{\text {hub }}= & 16^{*} \mathrm{M}_{\mathrm{t}}^{*} \mathrm{D} /\left(3.14\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)\right) \\
= & 16^{*} 159.15^{*} 10^{3 *} 56 /\left(3.14\left(56^{4}-28^{4}\right)\right) \\
= & 4.92 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned} \\
\text { If, } \tau_{\text {hub }} \leq\left[\tau_{\text {hub }}\right] \text { then design is safe }
\end{aligned}
\end{aligned}
$$

4. BOLT DIMENSIONS :-

$>$ Pitch circle diameter $D_{1}=D_{p}=3 d=3 * 28=84 \mathrm{~mm}$
$>$ No of bolt $\mathrm{n}=0.02 \mathrm{~d}+3=0.02 * 28+3=3.56=4$ nos.
$>$ Diameter of bolt d_{b} :

$$
\begin{aligned}
{\left[\mathrm{M}_{\mathrm{t}}\right] } & =\frac{\pi}{4} \times \mathrm{d}_{\mathrm{b}}^{2} \times[\tau]_{\mathrm{bolt}} \times \mathrm{n} \times \frac{\mathrm{D}_{\mathrm{P}}}{2} \\
\therefore \mathrm{~d}_{\mathrm{b}} & =\left[\frac{8 \times\left[\mathrm{M}_{\mathrm{t}}\right]}{\pi \times[\tau]_{\text {bolt }} \times \mathrm{n} \times \mathrm{D}_{\mathrm{P}}}\right] \\
& =8 * 159.15^{*} 10^{3} /(3.14 * 40 * 4 * 84) \\
& =5.49 \mathrm{~mm} \\
\mathrm{~d}_{\mathrm{b}} & =6 \mathrm{~mm}
\end{aligned}
$$

